Search results

Search for "bactericidal effect" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • , 100, 120, 200, 350, 500, and 700 °C, to evaluate the colour changes during heating. Minimal inhibitory concentration test The bactericidal effect of Ag/HNT-8 and Ag/HNT-0 was evaluated by a minimal inhibitory concentration (MIC) test. The first step was to obtain pure strains of Escherichia coli (ATCC
PDF
Album
Full Research Paper
Published 05 Aug 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • , advised Alexander the Great (335 BC) to add silver to his water [1][2][3]. Since then, the bactericidal effect of silver nanoparticles (AgNPs) has been studied and several experimental evidences have greatly improved the understanding of its mechanism and effects on the human body and on the environment
  • activity against bacteria and viruses, while toxicological studies indicate its safe usage in the human body [8][26]. In the field of multiresistant microorganisms, it is reported that AgNPs have a considerable bactericidal effect on multiresistant bacteria due its ability to simultaneously penetrate
  • cause acute toxic effects on human cells [102][103]. Effect on bacteria: Agnihotri et al. identified the bacteriostatic/bactericidal effect of AgNPs and determined the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of spherical silver nanoparticles against four
PDF
Album
Supp Info
Review
Published 14 May 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • NPs (30 nm) that were successfully synthesized using Atalantia monofila leaf extract [90]. The bactericidal effect against Gram-positive and Gram-negative bacteria was evaluated and the highest inhibition values were obtained for B. subtilis (inhibition zone diameter of 20 mm) and K. pneumoniae
  • through chemical reactions and these NPs have a strong bactericidal effect against Gram-negative and Gram-positive bacteria [108]. Composites containing Cu NPs and ZnO were developed by deposition of needle-like and spherical Cu NPs on a ZnO surface. These composites were exposed to visible light
PDF
Album
Review
Published 25 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • of 0.25 W/cm2 at 808 nm, lower than the ANSI limits) and the intrinsic nanochemical Ag NP bactericidal effect was observed. In order to combat bacterial adhesion and proliferation, recent techniques have been developed to functionalize photothermally active monolayers of gold nanostars on glass with
PDF
Album
Review
Published 31 Jul 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • can be noted from the literature that nanometer-sized Hap can effectively inhibit antibacterial activity but only when doped or cationic-substituted [55][56]. In contrast, the CB-derived Hap nanorods in the present study show optimum bactericidal effect on E. coli and S. aureus due to the size (>50 nm
  • ) and morphology of the material. However, no such activity was observed for CB alone. The obtained results are displayed in Figure 6 and the zone of inhibition in Table 1 shows a better bactericidal effect of Hap NRs towards S. aureus as compared with E. coli. This is due to the variations in cell
PDF
Album
Full Research Paper
Published 04 Feb 2020

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • ), could also decompose bacterial cells under visible-light irradiation, possibly due to an enhanced generation of reactive oxygen species and the intrinsic properties of silver. Gold-modified samples were almost inactive against bacteria in the dark, whereas significant bactericidal effect under visible
  • ; antimicrobial properties; bactericidal effect; noble-metal nanoparticles; plasmonic photocatalysis; Introduction Environmental pollution and the lack of clean potable water are main issues facing human development. Although, various methods of efficient control and monitoring of waste management have been
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • to isolate the effect of Ag on living cells (and, in particular, on bacteria) from that of other compounds. Most of the studies on the bactericidal effect of AgNPs concern NPs obtained by wet chemical methods. From studies using AgNPs with different sizes, it has been demonstrated that their
  • . subtilis and for the most sensitive E. coli strain. Concerning the AgNPs bactericidal effect, we found that MIC and MBC values were similar (at most doubled) or identical for each NP preparation on each tested microorganism, in agreement with that found on E. coli and B. subtilis by other authors [30][39
  • ]. According to Agnihotri et al. [30], the minimum time necessary to achieve bacteriostatic as well as bactericidal effect (≥99.9% of bacteria are killed) by AgNPs is expected to occur within 3 h. We then tested the time of appearance of the bacteriostatic as well as bactericidal effects of ns-ablated AgNPs at
PDF
Album
Full Research Paper
Published 18 Mar 2016

Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles

  • Ilana Perelshtein,
  • Anat Lipovsky,
  • Nina Perkas,
  • Tzanko Tzanov and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2016, 7, 1–8, doi:10.3762/bjnano.7.1

Graphical Abstract
  • the case of nano-CuO coated on cotton, which after 65 intensive washing cycles at 75 °C in a hospital washing machine, still maintained their bactericidal effect, yielding a reduction of about log 5 after this long process. Moreover, SEM pictures demonstrated that the CuO NPs remained on the surface
PDF
Album
Full Research Paper
Published 04 Jan 2016

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

  • Dulce G. Romero-Urbina,
  • Humberto H. Lara,
  • J. Jesús Velázquez-Salazar,
  • M. Josefina Arellano-Jiménez,
  • Eduardo Larios,
  • Anand Srinivasan,
  • Jose L. Lopez-Ribot and
  • Miguel José Yacamán

Beilstein J. Nanotechnol. 2015, 6, 2396–2405, doi:10.3762/bjnano.6.246

Graphical Abstract
  • interactions with nasal tissue surfaces in a charge-dependent manner [21]. It has been postulated that WTAs can attach to metal cations by spreading outside of the layers of PG [22] and consequently that cells lacking WTAs show a decreased proton-binding capability [20]. The bactericidal effect of silver is
PDF
Album
Full Research Paper
Published 15 Dec 2015

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • groups [20][30][31][32][33][37][38][39][40][41]. Typically, the dissolution is fast at the beginning of the experiment and slows down over time, leading to incompletely dissolved particles [33]. In the absence of oxygen, no dissolution occurs [20]. As a consequence, there is also no bactericidal effect
PDF
Album
Review
Published 03 Nov 2014
Other Beilstein-Institut Open Science Activities